标题

“Nano-Oddities”:不寻常的核酸dna纳米结构和Nanodevices总成

文档类型

文章

出版日期

6-1-2014

发表在

的化学研究

文摘

DNA是一个有吸引力的高分子建筑材料和纳米结构由于其自身识别和自组装能力。组装的形成依赖于base-specific交互,使链采用结构可控的方式。大多数基于DNA的高阶结构如DNA笼子,2 d和3 d DNA晶体,或折纸是基于DNA双股链稳定通过沃森-克里克互补。许多模配对模式之间可能存在或在DNA链;这些相互作用导致形成不寻常的结构,包括,但不限于,G-quadruplexes,三缸,parallel-stranded复合式i-motifs。这些结构的DNA构建块创建更大的多样性超过传统双螺旋DNA的纳米材料和有一定的优势,如增强的热稳定性和化学刺激的敏感性。在这个帐户,我们简要介绍这些替代DNA结构和详细描述他们在各种各样的纳米材料和纳米机器利用率。领域的DNA“nano-oddities”出现在1990年代末首次当DNA nanomachine设计基于平衡B-DNA经典之中,左撇子Z-DNA。不久之后,“概念验证”DNA纳米基于几个DNA“古怪”的报道。这些机器被启动的互补链(原则所使用的许多B-DNA-based nanodevices),通过选择阳离子、小分子、蛋白质,或pH值或温度的变化。 Today, we have fair understanding of the mechanism of action of these devices, excellent control over their performance, and knowledge of basic principles of their design. pH sensors and pH-controlled devices occupy a central niche in the field. They are usually based on i-motifs or triplex DNA, are amazingly simple, robust, and reversible, and create no waste apart from salt and water. G-quadruplex based nanostructures have unusually high stability, resist DNase and temperature, and display high selectivity toward certain cations. The true power of using these "nano-oddities" comes from combining them with existing nanomaterials (e.g., DNA origami, gold nanoparticles, graphene oxide, or mesoporous silica) and integrating them into existing mechanical and optoelectronic devices. Creating well-structured junctions for these interfaces, finding appropriate applications for the vast numbers of reported "nano-oddities", and proving their biological innocence comprise major challenges in the field. Our Account is not meant to be an all-inclusive review of the field but should give a reader a firm grasp of the current state of DNA nanotechnology based on noncanonical DNA structures.

这个文档目前不可用。

硬币
Baidu
map