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The way the RGEA works is to regulate ion flux to the collector by
adjusting the voltage on a retarding grid. At high positive retarding voltage,
very few ions have enough energy to overcome the barrier to be collected as
current. The current collected by the Faraday cup at the back in what should
be a conservative underestimate is given by (MKS units, assuming just 1 eV
ions for now and only1 mm2 collector area):

I = nevA ∼= 1020 10−19 104 10−6 ∼= 0.1 A

So we might predict lots of signal... even more if the ions have more energy or
if the density is higher. The problem with this estimate is that the densities
of directed ion flux are much lower (I think). Let’s do a little analysis to see
what we might expect.

Analysis of ion flux to RGEA collector: The probability of an ion
having a vector velocity is given by the Boltzmann factor:

P (v) ∝ e−mv2/2kT

We can convert this to a density and make it an equality like this:
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−m(v2
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What I have in mind here is that ẑ is the direction of the probe axis (with
positive z going into the entrance hole... there might even be a magnetic
field aligned with the hole). To be completely general, I can have different
temperatures in the different directions (this might happen if the probe were
along a magnetic field):
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For now, let’s assume the temperatures are the same in all directions (isotropic)
and that there’s no net flow. We can find the normalization constant by not-
ing that if we integrate the distribution of velocities over all possibilities, we
should get all the particles (this is essentially what Schroeder does in section
6.4). So we require that:

n0 =
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−∞
n(v)d3v

We find (I think) that the normalization constant gives us (see Reif chapter
7):
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The point here is that if n0 is the density right in front of the ion discriminator
grid, then this function tells us how the velocities are distributed (again no
drift yet). Imagine a sphere of arrows with their bases at the origin and
all the tips facing out. The density of long arrows drops rapidly (like the
Boltzmann factor).

If we were to do the RGEA analysis for this case (worth doing as a test),
we need to come up with I = nevzA like we did for our back-of-the-envelope
estimate above. This time, we need to worry about just those arrows in a
narrow cone around the +ẑ axis. The acceptance angle θ is given by the
geometry of the RGEA. The fraction of ions in the cone is easy in this case,
its just:

2π
∫
d(cosθ)

4π

So if the cone angle is π/2, we get the top hemisphere and get 1/2 of the
ions. Finally, we want the mean z-component of those vectors, weighted by
the Maxwellian (this is called the ion flux or first moment of the distribution):

nv̄z =
∫
vzn(v)d3v

Drifting distribution of ions: Now let’s assume the ions are all drifting
towards the RGEA with a velocity v0 in the +ẑ (still the same temperature in
all directions). This is the same as adding a constant v0 to all the arrows on
the sphere so they all shift up. Also, since we haven’t changed the density, the
normalization constant is the same. I think that must be true just on physical
grounds. Also, we could change variables to V = vz − v0 and dV = dvz and
get the same mathematical problem as before.

So I think we have (worth checking):
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Because of the drift velocity, more of the ions are in this acceptance cone but
its a harder integral. Once again, we want the mean z-component of those
vectors, weighted by the Maxwellian (the ion flux). There will be a part due
to v⊥ which we could call:

G⊥ =
∫
C⊥e

−mv2
⊥/2kT⊥dvxdvy

that amounts to another constant that you just carry through the calcula-
tion. The ion current to the collector at a particular setting of the retarding
potential would be something like:

Iion = eA
∫ ∞

vr

vzF (vz)G⊥dvz



where vr is the velocity corresponding to ions at the energy given by the
retarding voltage (ie 10 km/s protons correspond to 1 eV of energy ie 1 volt
of retarding potential will stop them).

vr =
(

2eVr

m

)1/2

Details: We should do more analysis but I realize now that we should
expect much smaller signal than our back-of-the-envelope calculation. First
of all, from the geometric considerations (ie the acceptance angle), we might
be getting less than 0.1 of the ions near the entrance hole. Secondly, the
screens only pass 0.3 each so 3 screens account for another factor of 0.05. In
the end, we might expect well less than 1 mA of ion current (which is what
we’re measuring in the present configuration).

Simple case (Reif): Reif does a simple (but important) case in his
section 7.11. He calculates the flux of particles hitting a wall (no entrance
hole, no drift). The flux is given by (see his equation 7.11.9):

Φ0 = nv̄z =
∫
n(v)vzd

3v =
∫

vz>0
n(v)vcosθ v2dv sinθ dθdφ

where we note that n(v) = n(v) is an isotropic function of the magnitude of
v. In this case, spherical coordinates make sense. The integral over φ gives
2π and the θ integral in the upper half-plane gives 1/2 so we get (7.11.10):

Φ0 = π
∫ ∞
0

v3n(v)dv

The integral is proportional to the mean speed for an isotropic, Maxwellian
distribution (see Reif 7.10.13):

v̄ =
4π

n

∫ ∞
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So evidently,

Φ0 =
1

4
nv̄

cheers, mb


