
Kolmogorov scaling (different indices)

The essence of the Kolmogorov 1941 scaling argument for the omni-
directional wavenumber spectrum for fully developed turbulence is that E(k)
depends only on k (via a power-law) and also on the energy transfer rate ε.
Kolmogorov thought about an energy rate per unit mass: ε ∼ v2/τ . For
us, we think about magnetic energy so ε ∼ b2/τ , where b is the fluctuating
part of the magnetic field, and τ is the time scale over which the energy is
transferred.

The dimensions of E(k) are such that:∫
E(k)dk = 〈b2〉

so E(k) ∝ b2/k. The time τ in the energy transfer rate depends on the
physics of the transfer. For MHD, we consider an Alfvén crossing time at
the scale L:

τMHD =
L

vA
∼ 1

kb
.

This is because ωMHD = kvA. So now we do dimensional analysis:

E(k, ε) = Ckαεβ

b2

k
= Ckα

(
b2

τMHD

)β
= Ckαb2β(kb)β

We find that 2 = 3β or β = 2/3 and −1 = α + β so α = −5/3. We get the
famous Kolmogorov 1941 result:

E(k) = Ck−5/3ε2/3

An interesting twist happens if the time scale for the transfer is faster, say
due to Whistler waves or kinetic Alfvén waves. In that case, there’s a different
dispersion relation (see below). We get that ωHall = k2δivA = k2δ2eωce, or
essentially:

τHall ∼
1

k2b
.

That extra factor of k changes the scaling for E(k) at scales smaller than δi.

E(k, ε) = Ckαεβ
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b2

k
= Ckα

(
b2

τHall

)β
= Ckαb2β(k2b)β

We find that 2 = 3β or β = 2/3 and −1 = α + 2β so α = −7/3. We get a
modified energy spectrum:

EHall(k) = Ck−7/3ε2/3

Dispersion relations: The dispersion relation for Whistler waves comes
from the dispersion relation for R-waves (see Bellan, or any plasma book):

c2k2

ω2
= 1−

ω2
pe/ω

2

1− ωce/ω
.

For SSX, the frequencies are always low compared to electron physics so
ω � ωpe, ωce, so

c2k2

ω2
= 1 +

ω2
pe

ωceω
.

Furthermore, SSX plasmas are always over-dense, meaning ωpe/ωce � 1
(about 100 typically). So the dispersion relation becomes:

c2k2

ω2
=

ω2
pe

ωceω

ωHall =
c2k2ωce
ω2
pe

= δ2eωcek
2 = δivAk

2.

The key point is that the dispersion relation depends on k2 (i.e. is dispersive)
but it turns out that δ2eωce = δivA (which is also interesting).

On my website, there are some notes called alpha scaling, but the basic
story is that:

α ≡ τAlfωci = Lωci/vA = L/δi

this says the number of orbits an ion executes in a characteristic dynamical
time (the time it takes an Alfvénic disturbance to move a distance L) is the
same as the number ion inertial lengths in L. Another way to write it is
vA = δiωci. From there, it’s easy to show that δivA = δ2eωce (i.e. the form I
used in the dispersion relation above) by keeping track of factors of M/m.
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