Swarthmore College Energy Use Status Report For 2016

Gross Square Feet Added to the Campus

Year Blds.

Added

2000	Total Sq. Ft.*		1,283,558
2001	Mullan Tennis & Fitness Center	28,275	1,311,833
2003	Chiller Plant	4,415	1,316,248
2003	Kyle House	5,010	1,321,258
2004	Science Center	134,281	1,455,539
2004	Alice Paul	34,471	1,490,010
2004	Septa Station	2,324	1,492,334
2007	Lang Center	9,642	1,501,976
2007	David Kemp	26,333	1,528,309
2010	Wister Education Center	5,400	1,533,709
2013	101 S. Chester Road	32,703	1,566,412
2014	Matchbox	21,000	1,587,412
2015	DanaWell Infill	23,770	1,611,182
	Increased square footage	327,624	

^{*} Excludes faculty staff housing

Year Btu's Per Square Foot per square foot footage	historiaal
1999-2000 108,255 1.39 1,311,833 1 ligh 2001-2002 108,255 1.39 1,311,833 1 ligh 2002-2003 123,792 1.63 1,321,258 2003-2004 110,673 1.51 1,321,258 2004-2005 114,738 1.74 1,492,334 2005-2006 109,738 1.89 1,492,334 2006-2007 109,270 1.73 1,492,334 2007-2008 103,740 1.89 1,528,309 2008-2009 95,930 1.63 1,528,309 2008-2009 95,930 1.63 1,528,309 2009-2010 104,406 1.46 1,533,709 108 2010-2011 109,570 1.38 1,533,709 108 2011-2012 109,570 1.38 1,533,709 108 2011-2012 109,681 1.34 1,566,412 1016 2013-2014 109,844 1.41 1,587,412 We 2014-2015	e a very good job of containing the rgy units required to heat, cool and tour Campus. Even with the growth we experienced over the past fifteen rs, we have driven the average Btu per are foot rate below 100,000 Btu. The benefit of reducing energy is illustrated on the next page. have limited control over energy reket prices so our costs need to be trolled by limiting use.

Reduction in the Energy Intensity of the Campus Nets Substantial Savings both Immediate and Ongoing

Year Ending	Gross Square Feet	Dollar Cost for Energy per GSF	BTU Rate of Energy Use per GSF (Energy Intensity)	Potential Cost at 2010 Rate of Energy use	Actual Cost	Savings by Reducing Energy Intensity from 2010 rate
2010	1,533,709	\$1.46	104,406	\$2,773,629	\$2,277,631	\$-
2011	1,533,709	\$1.38	95,970	\$2,515,589	\$2,180,720	\$334,868
2012	1,533,709	\$1.21	88,503	\$2,177,862	\$1,914,510	\$263,352
2013	1,566,412	\$1.34	91,681	\$1,697,144	\$1,617,140	\$80,004
2014	1,587,412	\$1.41	99,844	\$1,943,180	\$1,853,515	\$89,665
2015	1,611,182	\$1.38	96,456	\$2,110,212	\$1,853,515	\$256,697
2016	1,611,182	\$1.02	93,813	\$1,822,043	\$1,637,177	\$184,866
						\$1,209,453

Peak Energy Intensity in 2005 was 114,738 Btu/Sq. Ft. Over \$3 million dollars in avoided cost have been saved by reducing Energy Intensity

Actual use for 2016/Facilities Management Only

 Heat Plant Fu 	el Oil #2
-----------------------------------	-----------

- Heat Plant Nat. Gas
- Diesel
- Gasoline
- Plant Electricity
- Auxiliary Electricity¹
- Auxiliary Nat. Gas¹
- Auxiliary #2 Fuel¹
- Purchased REC's²

10,259	Gallons
80,457	dkth
4049	Gallons
19401	Gallons

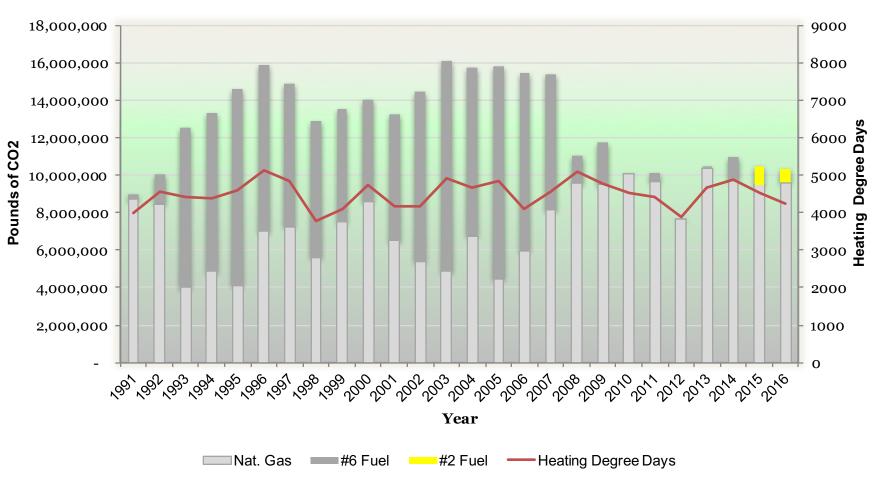
14,172,782 kWh 684,543 kWh

18,563 mcf

0 Gallons 16,880,000 kWh Equivalent Heat Value

1,539	mmBtu
80,457	mmBtu
567	mmBtu
2425	mmBtu
48,360	mmBtu
2,366	mmBtu
18,563	mmBtu
0	mmBtu

- 1 Metered Use in buildings (used for College business) off the main campus systems. Includes the addition of 101 South Chester Road.
- 2 Renewable Wind Energy Credits to offset carbon contribution of electricity use Excludes faculty/staff housing


Carbon Emissions By Source - Facilities Management

•	Scope 1-Direct Emissions-Fuels	4,575	MT eCO2
•	Scope 2-Indirect Emissions-Electricity	6,851	MT eCO2
•	Offsets-Wind Power	-8,228	MT eCO2
•	Net Emissions	3,198	MT eCO2


Calculations from Clean Air Cool Planet factors

^{*}Estimated from 2014

Annual CO2 Emissions from Heat Plant Fuels

Scope 1&2 Gross Combined Emissions From Heat Plant

