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Abstract	
	
Numerosity	perception	has	long	been	understood	to	be	divided	between	subitizing	and	
estimation.		In	a	series	of	three	experiments	(total	N	=	113),	a	new	number	“elbow”	point	in	
the	estimation	of	visual	number	for	numerosities	of	about	20	dots	is	confirmed.		Below	20,	
mean	estimates	are	linear	with	a	slope	of	about	1	and	power-function	exponents	for	
numerosity	estimation	approximate	unity,	though	estimate	variance	increases	dramatically	
above	about	6	elements.		For	numerosities	above	20,	estimates	become	increasingly	
compressed,	such	that	power	function	exponents	are	much	lower	(e.g.,	0.7)	and	are	lower	
still	when	both	ranges	are	estimated	within	the	same	experimental	procedure.		The	
experiments	described	here	show	that	the	location	of	the	inflection	point	appears	
insensitive	to	the	range	of	numbers	estimated	and	to	differences	in	density.	
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For	over	150	years,	it	has	generally	been	argued	that	the	perception	of	non-symbolic	
visual	number	may	be	divided	into	two	different	regimes	with	the	division	occuring	
between	low	numbers	(up	to	about	4	or	5	units),	where	number	can	be	accurately	and	
immediately	perceived,	and	higher	numbers	where	the	uncertainty	of	estimation	occurs	
(Atkinson,	Campbell	&	Francis	1976;	Fernberger,	1921;	Hamilton,	1859;	Jevons,	1871;	
Kaufman,	Lloyd,	Volk	&	Reese,	1949;	Mandler	&	Shebo,	1982;	Taves,	1941;	Trick	&	
Pylyshyn,	1994).	For	example,	Kaufman	et	al.	found	that	response	latencies	for	the	
estimation	of	very	small	numbers,	were	brief;	they	increased	rapidly	as	number	increased	
beyond	4	items,	and	they	plateaued	at	between	6	and	10	items.	Similarly,	as	early	as	Jevon’s	
experiment	with	cast	beans	150	years	ago,	it	appeared	that	the	break	from	perfect	accuracy	
in	estimation	occurred	between	4	and	5.	
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Here	we	consider	a	second	discontinuity	in	the	estimation	of	number,	a	break	(or	
elbow)	in	the	number	estimation	function	that	seems	to	occur	at	about	20	items	(Durgin,	
2016).	Whereas	much	recent	work	on	perceived	number	has	measured	comparisons,	
rather	than	the	enumerations,	of	visual	collections	(e.g.,	Burr	&	Ross,	2009;	Dakin,	Tibber,	
Greenwood	&	Morgan,	2011;	Durgin,	1995;	Gebuis	&	Reynvoet,	2012;	Leibovich,	Katzin,	
Harel	&	Henik,	2017;	Van	Oeffelen	&	Vos,	1982),	the	present	investigation	extends	research	
traditions	that	have	been	primarily	concerned	with	explicit	number	estimation	(i.e.,	
explicitly	evaluating	a	multitude	of	elements)	rather	than	visual	comparison	of	quantities	
based	on	their	apparent	numeric	magnitude.		Although	we	will	speculate	about	the	
meaning	of	this	second	elbow	in	the	General	Discussion,	the	main	purpose	of	this	paper	is	
to	characterize	this	second	elbow	by	means	of	careful	empirical	investigation	of	relevant	
parameters,	such	as	dot	density	and	the	range	of	values	employed,	that	might	affect	it.	

Kaufman	et	al.	(1949)	labeled	the	first	“elbow”	in	numerosity	perception	(at	about	5	
or	6	dots)	as	the	boundary	between	“subitizing”	and	“estimation”,	based	on	differences	in	
response	time,	confidence,	and	accuracy	(subitizing,	from	the	Latin	for	sudden,	was	
described	as	fast,	accurate	and	associated	with	great	confidence;	estimation	was	usually	
not).		Others	have	proposed	that	subitizing	may	be	limited	to	only	4	elements,	replaced	by	
rapid	counting	up	to	six	or	seven	(Atkinson	et	al.,	1976),	and	this	is	consistent	with	
Kaufman	et	al.’s	response	latency	data.		Although	the	“second	elbow”,	an	inflection	in	the	
number	estimation	function	at	about	20	dots,	can	(with	hindsight)	be	discerned	in	the	
estimation	data	of	Kaufman	et	al.,	(i.e.,	increasing	underestimation	as	numerosity	
increased)	they	made	no	comment	on	it.		

Krueger’s	(1972)	study	of	numeric	estimation	for	numbers	25	or	greater	showed	
that	a	power	function	with	an	exponent	(log-log	slope)	of	about	0.75	captured	his	data	well.		
Krueger	found	only	small	effects	of	display	area,	though	these	might	be	interpreted	as	
reflecting	imperfect	integration	of	density	information	and	area.		A	power	function	with	an	
exponent	less	than	1	implies	increasing	underestimation	in	this	range,	though	it	is	not	clear	
what	the	source	of	compression	is.	An	exponent	of	0.5	could	be	expected	if,	for	example,	
observers	substituted	mean	linear	separation	between	elements	for	density;	it	remains	
possible	that	visuals	systems	seek	to	integrate	a	variety	of	sources	of	relevant	information	
(density,	area,	linear	separation,	etc.;	Gebuis	&	Reynvoet,	2012)	when	estimating	numbers	
in	this	higher	range.		An	alternative	source	of	response	compression,	could	be	anchoring	
effects,	when	taking	repeated	measures.	To	rule	out	effects	of	repeated	measures,	Krueger	
(1982)	had	each	of	800	participants	make	only	a	single	numerosity	estimate.		He	still	
observed	an	exponent	less	than	one	(i.e.,	0.85).		Krueger	(1982;	Figure	1)	estimated	that	his	
power	function	would	cross	the	unity	line	at	about	20	dots,	but	he	did	not	report	direct	
investigations	of	the	transition	point.	

More	recently,	in	the	course	of	an	investigation	of	the	effects	of	adaptation	on	
perceived	number,	Huk	and	Durgin	(1996)	collected	verbal	estimates	of	visual	number	of	
homogenous	elements	both	in	adapted	and	in	unadapted	regions	of	the	visual	field	(these	
fields	of	small	white	dots	were	centered	4°	to	each	side	of	fixation).		They	confirmed	that	
estimates	were	proportionally	lower	in	the	densely-adapted	field	(an	effect	that	gradually	
emerged	between	5	and	20	dots),	and	that	estimates	in	each	field	produced	elbow-shaped	
estimation	functions	in	log-log	space	that	seemed	to	sharply	bend	at	about	20	dots	(see	
Durgin,	2016).	Whereas	estimation	data	for	numerosities	up	to	20	dots	could	be	fit	with	a	
power	function	with	an	exponent	somewhat	greater	than	1,	the	estimation	data	from	40	to	
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1152	dots,	though	offset	in	log-log	space,	as	a	function	of	adaptation,	were	well	fit	by	power	
functions	having	an	exponent	of	about	0.65.	This	exponent	might	be	lower	than	observed	
by	Krueger	(1972)	for	many	reasons,	including	response	compression,	given	the	large	
range	of	numbers	tested	within-subjects.		Moreover,	Huk	and	Durgin	(1996;	Durgin,	2016)	
did	not	vary	the	display	area	of	their	estimation	fields,	and	their	fields	were	presented	
briefly	and	peripherally,	unlike	those	of	Krueger.		A	departure	from	linearity	in	estimates	is	
what	characterizes	the	second	number	elbow	observed	by	Huk	and	Durgin.		It	suggests	a	
shift	in	the	estimation	process.		Whether	this	shift	is	related	to	cognitive	or	to	visual	
processes	of	estimation	(or	to	some	combination	of	the	two)	remains	to	be	seen.			

In	the	studies	to	be	reported	here	we	sought	to	measure	this	second	number	
estimation	elbow	with	centrally	presented	collections,	and	to	evaluate	whether	the	location	
of	the	elbow	depended	on	density,	number,	or	other	factors.	For	example,	Anobile,	Cicchini	
and	Burr	(2014;	see	also	Anobile,	Turi,	Cicchini	&	Burr	2015)	have	suggested	that	
numerosity	evaluation	processes	may	vary	as	a	function	of	density.		Although	density	has	
been	implicated	in	estimation	of	number	(e.g.,	Dakin	et	al.,	2011),	our	results	will	not	tend	
to	support	the	specific	idea	that	a	critical	density	defines	the	transition	point	marked	by	the	
second	number	elbow.		

Many	labs	have	chosen	to	create	number	displays	with	equal	numbers	of	dark	and	
light	dots	to	avoid	confounds	with	luminance	(e.g.,	Burr	&	Ross,	2008),	but	this	approach	
could	easily	affect	number	estimation	by	defining	two	equal	subsets	of	dots	for	separate	
estimation.		To	avoid	this	concern,	we	instead	used	identical	luminance-balanced	elements	
(luminance-balanced	dots;	Carlson,	Moeller	&	Anderson,	1984;	Durgin	&	Huk,	1997)	
randomly	positioned	without	overlap	in	one	of	three	sizes	of	display	so	as	to	dissociate	
both	density	and	brightness	from	number.		Our	participants	were	asked	to	estimate,	as	
exactly	as	they	could,	the	number	of	dots	presented	in	each	display;	the	displays	were	
presented	briefly	to	prevent	counting.	

	
Experiment	1:	The	second	elbow	in	the	estimation	of	visual	number	

	
In	addition	to	seeking	to	replicate	the	second	elbow,	this	experiment	was	designed	

to	test	whether	the	range	of	stimuli	presented	affects	the	scaling	of	number	estimation	
above	20.		That	is,	using	the	same	kind	of	stimuli	in	both	paradigms,	does	presenting	
numbers	only	above	20	(like	Krueger,	1972)	produce	different	kinds	of	estimates	in	the	
upper	range	than	a	design	that	includes	lower	numbers	(like	Huk	&	Durgin,	1996,	and	
Kaufman	et	al.	1949).	

To	directly	study	the	effect	of	range	while	discouraging	a	dependence	on	density	
alone	and	to	rule	out	trivial	issues	of	resolution,	we	adopted	a	design	to	meet	these	several	
constraints:	(1)	the	annular	elements	had	a	bright	center	and	dark	surround	that	were	of	
the	same	average	luminance	as	the	background	gray,	but	were	resolvable	well	into	the	
periphery,	so	that	all	elements	were	identical,	(2)	the	area	in	which	the	elements	appeared	
varied	over	a	range	greater	than	2	so	that	number	would	be	dissociated	from	density,	and	
(3)	half	the	participants	saw	a	quasi-logarithmic,	but	complete	range	of	numerosites	from	1	
to	over	200,	similar	to	Kaufman	et	al.	(1949),	while	the	other	half	only	saw	numerosities	
greater	than	25,	similar	to	Krueger	(1972).	
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Method	
The	procedures	in	this	and	the	following	experiments	were	approved	by	the	local	

Institutional	Review	Board.		
	 Participants.	Forty-one	undergraduate	students	(at	least	18	years	old	and	of	both	
sexes)	participated	in	partial	fulfillment	of	a	research	requirement	for	the	Introductory	
Psychology	course.	The	data	from	one	participant	was	excluded	from	analysis	because	the	
numerosity	estimates	given	were	extreme	outliers	(in	some	cases	20	SD	above	the	means	
of	the	other	participants),	leaving	40	participants.	Of	these,	half	made	estimates	over	the	
full-range;	half	only	saw	numerosities	greater	than	25.	

Stimuli.	The	number	displays	were	viewed	from	a	distance	of	60	cm	on	a	19”	Sony	
CRT	flat	screen	(34.3	cm	display	width)	with	a	resolution	of	1280	x	1024	pixels	refreshed	
at	100	Hz.		The	experiment	was	controlled	using	Psychtoolbox	(Brainard	&	Vision,	1997;	
Kleiner,	Brainard	&	Pelli,	2007).		Each	element	in	the	presented	array	was	a	white	disc	
0.30°	(12	pixels)	in	diameter,	surrounded	by	a	black	annulus,	with	an	outer	diameter	of	
0.46°	(18	pixels).		The	background	gray	of	the	remainder	of	the	screen	was	selected	so	as	to	
match	the	average	luminance	of	the	elements	as	measured	by	a	spot	photometer	(72	
cd/m2).		Independent	of	their	density,	the	dots	for	each	display	were	randomly	scattered	
based	on	an	algorithm	which	required	that	the	center	of	each	new	randomly-selected	dot	
was	at	least	0.61°	(24	pixels)	from	the	centers	of	all	other	dots	in	the	display,	as	well	as	
from	the	central	fixation	point,	so	as	to	avoid	overlap	and	minimize	clustering.		Finally,	the	
distance	of	each	dot	from	the	center	of	the	display	could	be	no	more	that	that	required	to	
ensure	that	the	outer	edge	of	the	dot	was	within	the	proscribed	radius	of	the	presentation	
area,	which	was	either	7.6°,	9.5°,	or	11.4°	(300	pixels,	375	pixels	or	450	pixels).		Sample	
displays	are	shown	in	Figure	1.		A	single	black	cross	hair	at	the	center	of	the	screen	was	
used	to	facilitate	fixation	prior	to	the	onset	of	the	display.		Once	all	dot	positions	had	been	
computed,	the	dot	array	was	displayed	for	400	ms	and	then	replaced	again	by	the	fixation	
display	with	a	text	box	for	entering	the	estimate	using	a	keyboard.	

	 	
Figure	1.	Sample	numerosity	displays	using	luminance-balanced	dots.		The	left	display	depicts	the	
smallest	area	used	(with	112	dots),	while	the	right	display	(with	28	dots)	depicts	the	largest	area.		
Note	that	luminance	balancing	will	not	be	perfectly	preserved	in	these	reproductions.	
	 Design.	The	range	of	numbers	presented	was	manipulated	between	subjects.	For	the	
full-range	condition,	a	quasi	logarithmic	range	of	32	different	numbers	starting	from	1	was	
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created	by	including	the	first	10	integers	and	then	increasing	by	2	up	to	20,	by	4	up	to	40,	
by	8	up	to	80,	by	16	up	to	160	and	by	32	up	to	224:	(1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	12,	14,	16,	18,	
20,	24,	28,	32,	36,	40,	48,	56,	64,	72,	80,	96,	112,	128,	160,	192,	224).		The	highest	density	
used	(224	dots	presented	in	the	smallest	area)	was	1.2	dots/deg2.		For	participants	in	the	
upper-range	condition,	the	top	half	of	this	range	was	densely	sampled	so	as	to	also	have	32	
distinct	values	by	inserting	16	intermediate	numbers	starting	with	26:	(26,	28,	32,	34,	36,	
38,	40,	44,	48,	52,	56,	60,	64,	68,	72,	74,	80,	88,	96,	104,	112,	120,	128,	144,	160,	176,	192,	
208,	224).	

A	block	of	96	trials	consisted	of	presenting	the	32	distinct	numerosities	within	each	
of	the	3	sizes	of	circle.	Two	blocks	of	96	randomly	ordered	trials	were	completed	by	each	
participant.	

Procedure.	After	being	informed	of	the	general	procedure,	participants	were	given	
specific	instructions	to	make	estimates	of	the	number	of	elements	presented	based	on	what	
they	saw.	They	were	encouraged	to	be	as	precise	as	possible	in	making	their	estimates	and	
to	avoid	reporting	only	round	numbers.	They	were	then	presented	with	the	192	
experimental	test	trials	one	by	one,	typing	in	their	estimate	for	each	one.		The	experiment	
typically	took	about	20	minutes.	

Analysis.	To	remove	typographic	errors,	estimates	that	were	equal	to	or	less	than	the	
square	root	of	the	presented	number	(e.g.,	an	estimate	of	8	or	less	for	64	dots)	were	
excluded	and	estimates	that	were	more	than	twice	the	presented	number	were	also	
excluded.	These	exclusions	represented	less	than	1%	of	the	data.	Because	numerosity	
estimation	normally	conforms	to	a	power	function,	all	statistics	are	reported	for	log-
transformed	data.	
Results	

Participants	generally	gave	self-consistent	responses:	The	median	within-subject	
correlation	between	the	log-transformed	dot	numbers	and	estimates	was	0.94.	A	plot	of	the	
mean	estimates	is	shown	in	Figure	2A;	the	mean	within-subject	coefficients	of	variation	
(CoVs),	corrected	for	the	small	sample	size	(normally	6	estimates	per	subject	for	each	
number	presented	across	all	display	sizes)	are	shown	in	Figure	2B.	These	graphs	illustrate	
the	existence	of	a	number	estimation	elbow	at	about	20	dots	and	a	corresponding	elbow	in	
the	CoVs.		The	CoV	data	replicates	the	very	low	variance	normally	found	in	the	subitizing	
range	(up	to	about	4	dots	in	our	data).	This	is	followed	by	a	rapid	increase	between	4	and	
20	dots	and	a	plateau	starting	at	the	location	of	the	second	estimation	elbow.	
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A.		 	 	 	 	 	 	 B.	

	 	
Figure	2.	Plots	of	mean	estimates	(left)	and	mean	within-subject	CoVs	(right)	as	a	function	of	
number	presented	separated	by	range	of	values	estimates	(filled	circles	for	participants	estimating	
in	the	upper	range	only),	with	between-subject	standard	error	bars.	For	small	numbers,	errors	bars	
are	smaller	than	the	plot	points.	

To	provide	a	clearer	picture	of	the	estimation	function,	a	plot	of	locally	smoothed	
data	(reflecting	the	non-independence	of	adjacent	values)	for	the	full-range	condition	is	
shown	in	log-log	space	in	Figure	3A,	as	a	function	of	display	area,	showing	that	the	same	
elbow	reported	by	Durgin	(2016)	is	clearly	present	in	the	full-range	data.	A	similar	plot	for	
the	high-range	only	version	of	the	experiment	is	shown	in	Figure	3B.	The	estimates	from	
both	groups	in	the	upper	range	(28-224)	are	contrasted	in	Figure	4.	

There	are	five	principal	features	of	the	estimation	data	worthy	of	note:	(1)	There	is	
an	elbow	in	the	full-range	data	(Figure	2A),	showing	a	change	in	slope	(i.e.,	exponent	of	the	
power	function)	that	occurs	somewhere	between	the	numerosities	of	16	and	32;	(2)	this	
elbow	coincides	with	the	start	of	an	apparent	plateau	in	the	CoVs	(Figure	2B),	which	rise	
dramatically	between	the	subitizing	range	and	the	elbow;	(3)	Figures	3A	and	3B	suggest	
that	both	groups	of	participants	replicate	Krueger’s	(1972)	observations	of	a	power-
function	fit	for	numbers	greater	than	25	and	both	replicate	his	small	effect	of	display	area;	
however,	(4)	as	shown	in	Figure	4,	the	exponents	(log-log	slopes)	in	the	upper	ranges	differ	
across	the	two	versions,	consistent	with	greater	sensitivity	when	only	the	upper	range	is	
tested.		Moreover,	(5)	as	suggested	in	Figure	2B,	within-subject	variability	in	the	upper	
range	(i.e.,	>	25	dots)	is	lower	when	only	the	upper	range	is	estimated	(Mean	CoV	=	0.23),	
than	when	the	full	range	is	tested	(Mean	CoV	=	0.26),	t(46)	=	4.31,	p	<	.001.	
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Figure	3.	Log-log	plots	of	estimates	as	a	function	of	display	area	showing	locally-smoothed	
estimates	and	between-subject	standard	errors	of	fit	(medium	gray).	Panel	A	shows	the	estimation	
data	from	the	full-range	condition	of	Experiment	1,	split	by	display	area;	superimposed	on	the	data	
are	a	dotted	black	line	representing	accurate	responding	(exponent	=	1.0),	and	a	power-function	fit	
(exponent	=	0.50)	to	the	upper	portion	of	the	data,	illustrating	the	transitional	elbow	at	a	
numerosity	of	about	20.	Panel	B	show	the	estimation	data	from	those	who	only	estimated	
numerosities	greater	than	25.		
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Figure	4.	The	effect	of	tested	range	on	estimates	in	upper	range	in	Experiment	1.		Locally-smoothed	
estimates	with	between-subject	standard	errors	for	the	upper	range	are	shown	as	a	function	of	
range	presented.		The	data	from	those	who	only	saw	numerosities	greater	than	25	(solid	black	fit	
line)	were	more	steeply	sloped	than	the	data	given	by	those	who	made	estimates	across	a	lower	
range	as	well	(dashed	black	fit	line).		

To	quantify	the	slope	difference,	the	exponents	of	the	best-fitting	power-functions	in	
the	common	range	(greater	than	25	dots)	were	calculated	for	each	display	area	and	
participant	(i.e.,	the	slopes	of	best	fits	to	the	log-transformed	values).	An	ANOVA	on	these	
exponents	with	display	area	(small,	medium	or	large)	as	a	within-subject	factor	and	range	
(high	or	full)	as	a	between-subject	factor	confirmed	that	the	mean	exponent	in	the	high	
range	group	(M	=	0.70,	95%	CI	[0.62,	0.77])	was	reliably	higher	than	the	mean	slope	over	
the	same	numeric	range	in	the	full-range	group	(M	=	0.50,	95%	CI	[0.45,	0.54]),	F(2,	76)	=	
0.27,	p	=	.761,	η2G,	=	0.32.		Note	that	an	exponent	of	0.5	is	consistent	with	square	root	
scaling	of	density	(i.e.,	using	information	about	linear	separations	among	dots	to	estimate	
density),	though	other	forms	of	explanation	for	this	low	exponent	may	be	more	likely	
(including	poorer	discrimination).		The	0.5	exponent	for	the	upper	portion	of	the	full	range	
condition	is	somewhat	lower	than	that	observed	by	Huk	and	Durgin	(1996;	Durgin,	2016).		
The	0.7	exponent	for	the	high	range	group,	on	the	other	hand,	is	consistent	with	that	
reported	by	Krueger	(1972)	for	a	similar	range.		

As	the	graphs	in	Figures	3A	and	3B	suggest,	the	ANOVA	found	no	effect	of	display	
size	on	the	exponents	across	observers,	F(2,	76)	=	0.27,	p	=	.761.		For	the	upper-range	
group,	an	ANOVA	on	log	estimates	indicated	a	highly-reliable	effect	of	display	size,	F(2,	38)	
=	11.5,	p	<	.001,	η2G	=	0.06,	though	the	average	difference	from	small	to	large	was	only	6.8%	
(95%	CI	[3.2%,	10.6%])	for	a	change	in	area	by	more	than	a	factor	of	2.	For	the	upper	range	
of	values	in	the	full-range	condition	(i.e.,	for	numerosities	28	to	224),	there	was	also	a	
small,	but	reliable,	effect	of	display	size	(M	=	9.6%,	95%	CI	[4.4%,	15.0%]),	F(2,	38)	=	12.5,	
p	<	.001,	η2G	=	0.15.	
Discussion	

Our	principal	concern	was	whether,	using	central	presentation,	we	would	still	see	
evidence	of	the	elbow	in	the	numerosity	function	at	about	20	dots.		Indeed,	when	
numerosity	estimates	were	made	across	a	range	including	numbers	from	1	to	224,	there	
was	a	clear	inflection	in	the	number	estimation	function	at	about	20.		In	contrast,	when	the	
range	was	limited	to	values	greater	than	25,	the	produced	estimation	function	is	similar	in	
detail	to	those	reported	by	Krueger	(1972),	and	still	has	a	log-log	slope	much	less	than	1,	
similar	to	the	estimation	data	beyond	the	elbow	in	the	full-range	data.		Note	that,	as	in	
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Kaufman	et	al.’s	(1949)	data,	the	exponent	of	the	power	function	is	about	1	in	the	low	range	
(for	5-16)	but	is	less	than	1	in	the	high	range.		Thus	even	when	large	elements	are	used,	
display	area	is	varied,	and	presentation	is	central	rather	than	peripheral,	we	replicate	the	
elbow	reported	by	Durgin	(2016;	Huk	&	Durgin,	1996),	and	observable	in	the	data	of	
Kaufman	et	al.	

This	pattern	of	data	suggests	that	different	types	of	information	may	be	used	to	
estimate	numbers	above	and	below	about	20.		Although	Figure	3A	could	be	used	to	argue	
that	the	transition	happens	slightly	earlier	for	smaller	(more	dense)	display	areas,	Figure	
3B,	where	no	transition	occurs,	still	shows	an	effect	of	display	area.		This	suggests,	instead,	
that	the	process	involved	in	evaluating	higher	numbers	is	simply	susceptible	to	a	display-
size	bias,	and	this	can	account	for	the	why	there	appears	to	be	an	earlier	separation	of	the	
estimates	in	the	smaller	display	areas.		Although	the	effects	of	display	size	are	superficially	
consistent	with	effects	predicted	by	occupancy	models,	for	example	(reduced	estimates	of	
number	for	denser,	smaller	displays),	the	overall	pattern	observed	here	is	not.		Simulations	
of	occupancy	models	show	that	the	area	bias	should	have	a	narrow	window	if	it	were	based	
on	a	measure	of	filled	area	or	occupancy	(Allik	&	Tuulmets,	1991;	Durgin,	1995),	and	would	
not	produce	an	elbow	of	this	sort.		

Still,	several	questions	remain.		First,	why	is	the	slope	for	the	upper	range	shallower	
for	the	participants	making	estimates	for	the	lower	range	as	well?		It	is	possible	that	when	
only	high	numbers	are	shown,	there	is	an	advantage	in	discrimination	for	high	numbers.		If,	
in	addition	to	subitizing	processes,	there	are	two	different	types	of	visual	process	involved	
in	number	estimation	(i.e.,	above	and	below	20)	and	cognitive	interfaces	with	these	
processes	compete	for	resources,	perhaps	discrimination	suffers	for	the	upper	range	when	
working	memory	must	keep	cognitive	interfaces	for	both	kinds	of	process	ready	for	
application.	This	hypothesis	is	supported	by	the	higher	CoVs	in	the	upper	range	among	
participants	who	judged	both	ranges.	

Second,	is	the	formation	of	the	elbow	dependent	on	the	presence	of	the	subitizing	
range?		That	is,	might	the	fairly	accurate	estimation	performance	up	to	about	20	dots	be	
parasitic	on	the	presence	of	instances	of	numbers	from	the	subitizing	range	to	help	
calibrate	estimation	up	to	about	20?		For	example,	being	asked	to	exactly	estimate	five	dots	
might	enable	one	to	better	estimate	ten	dots,	later,	by	calibrating	a	perceptual	unit	for	
“five”	that	can	be	scaled	up	when	confronted	with	collections	well	above	five	dots.		If	this	
were	true,	then	magnitude	estimation	for	numbers	below	20	might	be	less	accurate	if	no	
small	sets	were	shown	during	the	experiment.	

	
Experiment	2:	Range	independence	

	
In	Experiment	2	we	sought	to	test	whether	the	location	of	the	visual	number	elbow	

depends	on	the	inclusion	of	the	subitizing	range	in	the	tested	values.		That	is,	it	seemed	
possible	that	the	subitizing	range	might	serve	to	calibrate	the	estimation	range	(up	to	a	
point),	such	that	the	low	numbers	(i.e.,	below	7)	help	to	scale	the	estimation	of	somewhat	
larger	numbers	(up	to	20	or	so).		We	therefore	manipulated	the	range	of	numbers	being	
estimated	to	test	whether	the	presence	or	absence	of	the	subitizing	range	affected	the	
location	or	shape	of	the	elbow.		If	the	elbow	seen	in	Experiment	1	merely	represents	a	
transition	between	subitizing-supported	(scaled)	estimation	and	self-scaled	estimating,	
then	eliminating	the	subitizing	range	might	eliminate	the	elbow.	Conversely,	if	the	elbow	
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represents	a	division	between	two	different	kinds	of	estimation	process,	the	transition	
should	occur	whether	or	not	the	subitizing	range	is	included.	
Methods	
	 The	stimuli,	apparatus	and	general	procedures	were	as	in	Experiment	1.		

Participants.	Forty-eight	undergraduate	students	participated	in	partial	fulfillment	
of	a	research	requirement	for	the	Introductory	Psychology	course.		None	had	participated	
in	Experiment	1.	Half	of	the	participants	made	estimates	in	each	of	the	two	ranges.	
	 Design.	The	manipulation	of	numeric	range	(low	–	including	the	subitizing	range	vs.	
high	–	not	including	the	subitizing	range)	was	implemented	between-subjects,	with	
random	assignment.		Both	groups	of	participants	gave	estimates	of	the	elbow	portion	of	the	
range	used	in	Experiment	1.		That	is	both	groups	saw	16	numbers	that	included	the	range	
from	9	to	72	(9,	10,	12,	14,	16,	18,	20,	24,	28,	32,	36,	40,	48,	56,	64,	72).		The	low-range	
(subitizing)	group	additionally	gave	estimates	of	all	of	the	numbers	from	1-8,	intermixed	
with	the	shared	range.		The	high-range	(non-subitizing)	group	additionally	gave	estimates	
of	8	numbers	above	the	shared	range	(viz.,	80,	96,	112,	128,	144,	160,	192,	224).		Thus	each	
group	had	8	numbers	unique	to	that	group	in	addition	to	the	range	of	16	numbers	(half	
greater	than	25	and	half	lower)	spanning	9	to	72	that	was	common	to	both	groups.		As	in	
Experiment	1,	there	were	3	different	display	sizes	used,	but	only	24	distinct	numbers,	and	
thus	a	total	of	72	trials	constituted	the	full	design.		Two	blocks	of	72	randomly	ordered	
estimation	trials	were	collected.		
Results	and	Discussion	
	 If	the	presence	or	absence	of	the	subitizing	range	was	irrelevant	to	the	formation	of	
an	elbow	at	about	20	elements,	we	should	expect	to	see	no	effect	of	our	manipulation	of	
this	range.		The	mean	estimates	for	each	condition	are	shown	in	Figure	5	against	the	fit	
lines	computed	for	the	full	range	data	from	Experiment	1.	The	figure	suggests	that	when	
the	subitizing	range	was	excluded,	there	was	an	elevation	of	estimates	in	the	upper	range.	
Computing	the	log-log	slope	for	each	participant	in	this	upper	range	(values	greater	than	
25)	produced	a	mean	value	of	0.61	(95%	CI	[0.54,	0.68]),	which	is	higher	than	the	slopes	in	
this	upper	range	for	the	full	range	condition	of	Experiment	1,	t(42)	=	2.71,	p	=	.010,	d	=	
0.84.	This	elevation	of	the	exponents	could	have	been	due	to	the	elimination	of	the	
subitizing	range.	But	it	might	also	be	attributable	to	the	greater	proportion	of	trials	that	
were	in	the	upper	range	as	a	consequence	of	eliminating	the	subitizing	range.	
	 In	order	to	test	whether	the	effect	of	contextual	range	(high	or	low)	differentially	
affected	the	upper	range	of	numbers,	an	ANOVA	was	conducted	on	estimates	over	the	
shared	range	(9-72),	with	eight	levels	of	number	and	two	levels	of	magnitude	(representing	
9-24	vs.	28-72),	as	well	as	size	as	within-subject	variables,	and	contextual	range	as	a	
between-subject	variable.	Because	there	was	a	marginal	interaction	between	number	and	
magnitude	(consistent	with	the	presence	of	a	discontinuity),	F(7,	322)	=	392.4,	p	<	.001,	η2	
=	0.66,	separate	ANOVAs	were	conducted	for	each	magnitude	level.	

One	ANOVA	on	the	mean	log	estimates	at	each	numeric	value	above	25	in	the	shared	
range	of	the	present	experiment	used	number	(i.e.,	28	to	72)	and	display	area	(3	levels)	as	
within-subject	factors,	and	contextual	range	(high	or	low)	as	a	between-subject	factor.	It	is	
of	no	surprise	that	log	estimates	varied	as	a	function	of	number,	F(7,	322)	=	112.6,	p	<	.001,	
η2	=	0.28,	and	that	the	effect	of	display	size	was	also	reliable,	F(2,	92)	=	20.0,	p	<	.001,	η2	=	
0.02.		What	is	most	pertinent	is	that	log	estimates	were	higher	for	this	range	when	the	
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contextual	range	included	higher	numbers	rather	than	lower	numbers,	F(1,	46)	=	4.94,	p	=	
.031,	η2G	=	0.05.		
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Figure	5.	Results	of	Experiment	2.	Mean	estimates	in	log-log	space	are	shown	as	a	locally	smoothed	
plot	with	between-subject	standard	errors	(medium	gray).	The	dashed	lines	represents	actual	
number	(black),	as	well	as	the	fit	line	(red;	log-log	slope	=	0.5)	found	for	the	upper	range	of	the	full	
range	group	in	Experiment	1.	
	 A	second	ANOVA	on	mean	log	estimates	at	each	numeric	value	below	25	in	the	
shared	range	of	the	present	experiment	used	number	(i.e.,	9	to	24)	and	display	area	(3	
levels)	as	within-subject	factors,	and	contextual	range	(high	or	low)	as	a	between-subject	
factor.	Again,	estimates	varied	as	a	function	of	number,	F(7,	322)	=	392.4,	p	<	.001,	η2	=	
0.66,	and	the	effect	of	display	size	was	also	reliable	in	this	range,	F(2,	92)	=	15.7,	p	<	.001,	η2	
=	0.02.		However	the	estimates	for	these	numerosities	below	25	did	not	differ	reliably	as	a	
function	of	the	contextual	range,	F(2,	28)	=	2.28,	p	=	.138.	
Discussion	

Eliminating	the	subitizing	range	did	not	remove	the	discontinuity	in	the	number	
estimation	function	that	seems	to	occur	at	about	20	items.	Despite	the	absence	of	a	
subitizing	range,	there	still	appeared	to	be	two	different	types	of	estimation	at	play,	and	the	
transition	between	them	occurred	at	about	the	same	value.	Eliminating	the	subitizing	range	
did	allow	the	slope	of	the	log-log	estimates	above	25	to	increase	relative	to	the	full-range	
condition	of	Experiment	1.	

	
Experiment	3:	Truncating	the	upper	range	

	
As	a	test	of	the	stability	of	this	discontinuity	point,	we	sought	to	truncate	the	upper	

range	of	values	to	see	if	eliminating	numbers	above	40,	for	example,	could	eliminate	the	
discontinuity.		Perhaps	numbers	between	20	and	40	could	be	absorbed	into	the	same	
process	used	to	evaluate	10-20	if	no	higher	numbers	had	to	be	evaluated	during	the	same	
experimental	procedures.	To	achieve	a	cap	of	40	while	retaining	24	distinct	values,	we	
sampled	more	densely	from	the	range	of	26-40.	The	experiment	otherwise	proceeded	as	
before.	Could	restricting	visual	analysis	to	this	range	eliminate	the	shift	toward	the	lower	
slopes	associated	with	the	upper	range	of	numbers	in	the	previous	experiments?	
Alternatively,	if	the	location	of	the	elbow	is	impervious	to	the	range	of	numbers	used,	it	
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may	reflect	a	transition	between	two	distinct	visuo-cognitive	processes	for	number	
estimation.	
Methods	

The	methods	were	largely	the	same	as	in	low-range	condition	of	Experiment	2,	and	
were	designed	to	allow	comparison	to	the	lower	range	employed	there	(1-72).	That	is,	the	
same	number	of	estimates	were	collected	and	the	analysis	proceeded	as	before.	

Participants.	Twenty-four	undergraduate	students	participated	in	partial	fulfillment	
of	a	research	requirement	for	the	Introductory	Psychology	course.		None	had	participated	
in	Experiments	1	or	2.		

Numeric	range.	Numbers	from	2	to	40	were	tested.		In	addition	to	16	values	between	
2	and	24	(i.e.,	the	eight	numbers	from	2	to	9,	and	the	eight	even	numbers	from	10-24),	the	
upper	portion	of	the	range	was	now	represented	by	the	eight	even	numbers	from	26	to	40.	
Results	

A	plot	of	the	mean	log	estimates	is	shown	in	Figure	6A	against	the	fit	line	from	
Experiment	1.		The	same	data	are	shown	as	a	function	of	display	size	in	Figure	6B.		It	is	
evident	that	capping	the	upper	range	at	40	did	not	substantially	alter	the	estimates	in	this	
range.		Mean	estimates	of	the	log-log	slope	for	each	participant	for	numerosities	greater	
than	25	(M	=	0.52,	95%	CI	[0.38,	0.66])	did	not	differ	from	those	in	Experiment	2	in	upper	
range	(26-72)	of	the	low-range	condition	(1-72),	t(47)	=	0.12,	p	=	.904.	

A.		 	 	 	 	 B.		 	 	 	 	 	
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Figure	6.	Results	of	Experiment	3.	Mean	estimates	in	log-log	space	are	shown	as	a	locally	smoothed	
plot	with	between-subject	standard	errors	(medium	gray).	A.	The	left	panel	shows	the	overall	
curve,	collapsing	across	display	size.		B.	The	right	panel	shows	the	curves	as	a	function	of	display	
size.	The	dashed	lines	in	each	graph	represent	actual	number	(black),	as	well	as	the	fit	line	(red;	log-
log	slope	=	0.5)	found	for	the	upper	range	of	the	full	range	group	in	Experiment	1.	
	 As	in	Experiment	1,	there	was	a	small	size	effect	in	the	upper	range.		That	is,	a	
within-subject	ANOVA	on	mean	log	estimates	for	numerosities	greater	than	25	(i.e.,	26-40),	
demonstrated	that	estimates	in	the	upper	range	differed	by	display	area,	F(2,	48)	=	11.5,	p	
<	.001,	η2G	=	0.02.		The	magnitude	of	this	effect	was	equivalent	to	an	11%	increase	in	
estimates	from	the	smallest	to	the	largest	displays,	which	is	similar	to	that	found	in	
Experiment	1	(i.e.	10%)	for	the	upper	range	of	the	full-range	condition.	
Discussion	
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Experiment	3	showed	that	the	location	of	the	elbow	seems	stable	even	when	the	
range	of	number	values	tested	is	shifted	dramatically.	Even	with	the	subitizing	range	in	
place,	the	elbow	remained	in	essentially	the	same	location	when	the	upper	range	was	
capped	at	40,	as	when	it	extended	to	224	(Experiment	1)	or	to	72	(Experiment	2).			The	
evidence	for	this	is	that	the	very	same	overall	fit	lines	drawn	to	capture	the	estimation	data	
in	Experiment	1	provided	a	good	fit	to	the	data	from	Experiment	3.	Of	course,	as	before,	
these	two	fit	lines	intersect	at	20.	

The	display	area	effects	(amounting	to	a	10%	increase	in	estimates	with	a	125%	
increase	in	area)	appear	to	emerge	most	clearly	at	the	transition	between	mid-range	
numerosities	(8-16)	and	the	upper	range	(25	and	up).		This	provides	additional	support	for	
the	idea	that	numerosity	estimation	is	based	on	different	visuo-cognitive	processes	in	these	
two	ranges.		The	effects	of	area	may	be	consistent	with	an	imperfect	scaling	of	the	
integration	of	density	and	area	information	in	the	upper	range.	

	
General	Discussion	

	
Our	goal	in	this	paper	has	been	to	explore	the	effects	of	numeric	range	on	the	

estimation	of	numerosity	in	order	to	establish	the	existence	of	a	transition	between	two	
different	types	of	estimation	at	about	20	dots.		Across	three	experiments	we	tested	ranges	
that	started	in	the	subitizing	range	(i.e.,	at	1	or	2),	above	the	subitizing	range	(at	9)	or	in	a	
range	starting	above	25.		In	these	studies,	we	observed	that	the	log-log	slope	of	the	
numerosity	estimation	function	above	25	was	lowest	(about	0.5)	in	the	three	experimental	
tests	where	the	subitizing	range	was	included,	and	highest	(about	0.7)	when	all	numbers	
tested	were	above	25.		When	estimation	began	at	9,	the	slope	in	the	upper	range	was	
intermediate	between	these	values	(about	0.6).		Whatever,	the	starting	point,	however,	the	
location	of	the	change	in	slope	from	about	1.0	to	a	much	lower	value	was	consistently	at	
about	20	dots.	Whether	or	not	these	particular	slope	values	would	generalize	to	other	types	
of	dots,	the	striking	elbow	repeatedly	observed	in	our	data	replicates	a	discontinuity	
present	in	the	data	of	Huk	and	Durgin	(1996;	Durgin,	2016),	as	well	a	Kaufman	et	al.	(1949)	
using	very	different	kinds	of	dots.	

Much	like	the	discontinuity	at	6	that	Kaufman	et	al.	(1949)	argued	represented	a	
break	between	what	they	labeled	the	subitizing	range	and	the	estimation	range,	the	
present	discontinuity	is	both	dramatic	and	stable	across	many	studies.	Although	its	precise	
cause	is	not	understood,	there	is	clearly	a	discontinuity	in	the	way	estimates	are	
formulated	beyond	20	dots.		Human	language	number	systems	are	usually	base	10	or	base	
20,	and	this	has	been	linked	to	the	number	of	“digits”	(fingers	or	fingers	and	toes)	typically	
allotted	to	a	human.	The	consistent	emergence	of	the	elbow	at	about	20	may	therefore	be	
related	to	the	verbal	number	system	itself	somehow:	From	5	up	to	20,	visual	number	can	
be	estimated	only	approximately	(i.e.,	with	some	noise)	but	there	is	relatively	little	bias	in	
the	estimates;	there	is	a	near	one-to-one	correspondence	between	presented	numbers	and	
the	integers	represented	by	the	mean	estimates.		Beyond	this	range,	estimation	becomes	
increasingly	compressed	and	one-to-one	correspondence	is	therefore	not	maintained.	

In	this	spirit,	we	propose	to	call	the	upper	range	the	“superdigital”	range	of	numeric	
estimation.		By	suggesting	something	beyond	“digital”	(i.e.,	beyond	the	typical	number	of	
fingers	and	toes)	this	term	has	the	advantage	of	capturing	both	the	transition	point	of	the	
superdigital	range	(about	20),	and	the	lowered	exponent	in	the	superdigital	range:	Because	
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the	exponents	in	this	range	are	consistently	less	than	one,	this	range	clearly	cannot	involve	
one-to-one	correspondence	(even	approximately).		That	is,	numerosities	in	this	range	are	
treated	more	like	continuous	magnitudes	than	discrete	multitudes.	

It	seems	unlikely	that	the	discontinuity	is	just	a	matter	of	the	numeric	estimation	
process	itself	rather	than	an	interaction	between	the	estimation	process	and	the	perceptual	
processes	that	support	it.		This	is	because	this	discontinuity	is	not	a	typical	feature	of	
magnitude	estimation	using	numbers.		It	seems	reasonable	to	suggest	that	it	may	represent	
a	transition	to	an	approximate	number	domain	where	the	most	efficient	means	of	
estimating	number	involves	combining	density	and	area	information	(Dakin	et	al.,	2011;	
Durgin,	1995,	2001).	

Notably,	however,	the	location	of	the	discontinuity	does	not	appear	to	be	
determined	by	density,	per	se,	and	thus	may	be	unrelated	to	the	density-based	transition	in	
number-comparisons	proposed	by	Anobile	et	al.	(2014).		That	is,	the	location	of	the	elbow	
observed	here	clearly	did	not	change	location	by	a	factor	of	2	when	the	size	of	the	display	
(and	thus	the	density)	was	altered	by	a	factor	of	2.25,	as	would	have	to	the	case	if	the	
transition	point	were	determined	by	display	density.		Moreover,	Anobile	et	al.	(2015)	
suggest	that	the	transition	in	their	experiment	occurred	at	2.3	dots/deg2	in	central	vision,	
and	0.5	dots/deg2	15°	in	the	periphery.	Anobile	et	al.	(2014)	suggest	a	transition	at	0.25	
dots/deg2.		However,	the	transition	point	of	20	dots	in	the	present	experiment	would	
represent	a	density	of	only	0.11	dots/deg2	in	the	smallest	display	and	only	0.05	dots/deg2	
in	the	largest.	Thus,	the	location	of	the	second	number	elbow	seems	likely	to	have	a	
different	origin.		After	all,	there	is	a	fundamental	difference	between	the	estimation	task	
studied	here	and	the	magnitude	comparison	tasks	used	by	Anobile	et	al.,	in	that	only	
estimation	tasks	require	establishing	an	integer	value	for	a	collection.	

Nor	does	this	transition	point	fit	with	the	speculations	of	Laski	and	Siegler	(2007)	
regarding	developmental	patterns.	Rather,	the	lowered	exponent	in	the	superdigital	range	
is	consistent	with	a	great	deal	of	psychophysical	work	on	the	scaling	of	number	itself	(e.g.,	
Banks	&	Hill,	1974).		This	work	suggests	that	logarithmic	encoding	predominates	in	our	
conceptual	representations	of	number,	and	that	this	is	most	evident	for	unbounded	ranges	
(as	in	estimation).		Bounded	ranges	(such	as	number	lines)	tend	to	produce	more	linear	
coding	(Banks	&	Coleman,	1981).		If	the	range	up	to	20	were	considered	bounded	(because	
of	an	estimation	process	that	can	only	manage	up	to	about	20	elements),	and	the	range	
beyond	twenty	unbounded,	the	elbow	at	20	might	represent	that	transition.	

Perhaps	the	simplest	theory	of	why	approximately	linear	estimation	breaks	down	at	
about	20	can	be	derived	from	applying	a	subitizing	process	iteratively.		If	2	to	4	clusters	of	
3	to	5	dots	can	serve	as	a	basis	for	estimating	number	with	little	bias	in	the	range	of	6-20,	
for	example,	the	elbow	we	have	observed	here	may	be	bounded	by	the	upper	limits	of	
adding	(or	multiplying)	together	a	subitizable	number	of	roughly	subitizable	clusters.	If	
some	sort	of	grouping	and	adding	strategy	does	distinguish	the	middle	range	from	the	
superdigital	range,	we	suspect	such	a	strategy	may	depend	on	the	presence	of	a	linguistic	
system	that	represents	numbers	(e.g.,	Gordon,	2004)	as	well	as	fluency	in	basic	arithmetic	
knowledge.		For	now	we	leave	these	speculations	for	future	tests.	
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